DenoiSpeech: Denoising Text to Speech with Frame-level Noise ModelingText-to-Speech 모델을 학습하기 위해서는 고품질의 speech data가 필요하지만, 대부분 noisy speech를 포함하고 있음DenoiSpeechNoisy speech data를 사용하여 clean speech를 합성할 수 있는 Text-to-Speech 모델모델과 jointly train 되는 noise condition module을 사용하여 fine-grained frame-level noise를 모델링하여 real-world noisy speech를 처리함논문 (ICASSP 2021) : Paper Link1. IntroductionText-to-Speech ..
VITS2: Improving Quality and Efficiency of Single-Stage Text-to-Speech with Adversarial Learning and Architecture DesignSingle-stage text-to-speech model은 기존의 two-stage 방식보다 더 우수한 합성 품질을 보이고 있지만, phoneme conversion에 대한 dependency와 computational efficiency 측면에서 개선이 필요함VITS2기존의 VITS structure를 개선하여 보다 natural 한 음성 합성과 multi-speaker에서 더 나은 speaker similarity를 지원Fully end-to-end single-stage approac..
SANE-TTS: Stable and Natural End-to-End Multilingual Text-to-SpeechStable 하고 natural 한 end-to-end multilingual text-to-speech 모델이 필요함SANE-TTSMultilingual synthesis의 naturalness를 향상하기 위해 domain adversarial training을 도입추가적으로 speaker regularization loss를 적용하여 duration predictor의 speaker embedding을 zero-vector로 대체해 cross-lingual synthesis를 stablize 함논문 (INTERSPEECH 2021) : Paper Link1. IntroductionM..
DSE-TTS: Dual Speaker Embedding for Cross-Lingual Text-to-SpeechCross-lingual text-to-speech는 speaker timbre를 정확하게 retain 하면서 nativeness를 반영하는 것이 어려움DSE-TTSMel-spectrogram 보다 더 적은 speaker information을 포함하는 vector-quantized acoustic feature를 활용해당 acoustic feature를 기반으로 speaking style을 반영하는 Dual Speaker Embedding을 도입- 한 embedding은 linguistic speaking stlye을 학습하기 위해 acoustic model에 전달되고,- 다른 embedd..
AutoTTS: End-to-End Text-to-Speech through Differentiable Duration ModelingText-to-Speech 모델은 일반적으로 external aligner가 필요하고, decoder와 jointly train 되지 않으므로 최적화의 한계가 있음AutoTTSInput, output sequence 간의 monotonic alignment를 학습하기 위해 differentiable duration method를 도입Expectation에서 stochastic process를 최적화하는 soft-duration mechanism을 기반으로 하여 direct text-to-waveform synthesis 모델을 구축추가적으로 adversarial train..
CrossSpeech: Speaker-Independent Acoustic Representation for Cross-Lingual Speech SynthesisCross-lingual Text-to-Speech 성능은 여전히 intra-lingual 성능보다 떨어짐CrossSpeechSpeaker와 language information의 disentangling을 acoustic feature space level에서 효과적으로 disentangling 하여 cross-lingual text-to-speech 성능을 향상이를 위해 Speaker-Independent Generator와 Speaker-Dependent Generator를 도입하고 각 information을 개별적으로 처리함으로써 dis..