![](http://i1.daumcdn.net/thumb/C148x148/?fname=https://blog.kakaocdn.net/dn/xothf/btsFiuVIGF5/qsWcokoPva2FzKA7NeOxs1/img.png)
Direct Design of Biquad Filter Cascades with Deep Learning by Sampling Random Polynomials Arbitrary magnitude response와 match 하도록 Infinite Impulse Response filter를 설계하는 것은 어려움 - Yule-Walker method는 효율적이지만 high-order response를 정확하게 match 하지 못함 - Iterative optimization은 우수한 성능을 보이지만 initial condition에 민감 IIRNet 수백만개의 random filter에 대해 학습된 neural network를 사용하여 target magnitude response에서 filter coe..
![](http://i1.daumcdn.net/thumb/C148x148/?fname=https://blog.kakaocdn.net/dn/cih9W7/btsE8zBZEFj/BrqxTGOjZ4PMAr7aiR2omk/img.png)
Lightweight and Interpretable Neural Modeling of an Audio Distortion Effect Using Hyperconditioned Differentiable Biquads Audio distortion effect를 모델링하기 위해 differentiable cacaded biquads를 사용할 수 있음 Hyperconditioned Differentiable Biquads Trainable Infinite Impulse Response (IIR) filter를 hyperconditioned case로 확장 Transformation은 distortion effect의 external parameter를 internal filter와 gain paramete..
![](http://i1.daumcdn.net/thumb/C148x148/?fname=https://blog.kakaocdn.net/dn/U0aHf/btsEHqkYYE8/2qko103NU8Ec67yWhEqbN0/img.png)
Sinusoidal Frequency Estimation by Gradient Descent Gradient descent를 사용하여 sinusoidal frequency parameter를 추정하는 것은 어려움 - Error function이 non-convex 하고 local minima에 densely populated 되어 있기 때문 Sinusoidal Frequency Estimation by Gradient Descent Complex exponential surrogate의 Wirtinger derivative와 first order gradient-based optimizer를 활용 Differentiable signal processing을 oscillatory component의 fre..
![](http://i1.daumcdn.net/thumb/C148x148/?fname=https://blog.kakaocdn.net/dn/OwMYK/btsEyNPnIzc/jHtNz9uqpTyeq4t6oKMREk/img.png)
Differentiable Signal Processing with Black-Box Audio Effects Audio effect를 deep neural network로 통합하여 automate audio signal processing을 수행할 수 있음 DeepAFx Non-differentiable black-box effect layer를 학습시키기 위해 stochastic gradient approximation을 활용하여 end-to-end backpropagation을 생성 Tube amplifier emulation, automatic mastering, breath removal에 대한 audio production 작업에 적용 가능 논문 (ICASSP 2021) : Paper Link..
![](http://i1.daumcdn.net/thumb/C148x148/?fname=https://blog.kakaocdn.net/dn/uAml6/btsEkhpFhED/dOPlxrEmdlafiR54F6nQsK/img.png)
Embedding a Differentiable Mel-Cepstral Synthesis Filter to a Neural Speech Synthesis System End-to-End controllable speech synthesis를 위해 Mel-cepstral synthesis filter를 활용할 수 있음 Differentiable Mel-Cepstral Synthesis Filter Mel-cepstral synthesis filter를 통해 voice characteristics와 pitch는 각각 frequency warping parameter와 fundamental frequency를 통해 control 될 수 있음 이때 End-to-End 방식으로 최적화할 수 있도록 diffeten..
![](http://i1.daumcdn.net/thumb/C148x148/?fname=https://blog.kakaocdn.net/dn/BMfVB/btsD4j03G6Q/JEdvl4qG5VrylP8l6Ookn0/img.png)
DDSP: Differentiable Digital Signal Processing 대부분의 audio 생성 모델은 time 또는 frequency domain 중 하나에서 sampling을 생성함 - Signal을 표현하는 데는 적합하지만 sound가 생성되고 인식되는 방식에 대한 knowledge를 활용하지 않음 Vocoder의 경우 domain knowledge를 성공적으로 반영할 수 있지만 auto-differentiable-based 방식과는 통합하기 어려움 Differentiable Digital Signal Processing (DDSP) 기존의 signal processing 요소를 deep learning 방식과 통합 Neural network의 expressive power를 잃지 않으..