![](http://i1.daumcdn.net/thumb/C148x148/?fname=https://blog.kakaocdn.net/dn/xothf/btsFiuVIGF5/qsWcokoPva2FzKA7NeOxs1/img.png)
Direct Design of Biquad Filter Cascades with Deep Learning by Sampling Random Polynomials Arbitrary magnitude response와 match 하도록 Infinite Impulse Response filter를 설계하는 것은 어려움 - Yule-Walker method는 효율적이지만 high-order response를 정확하게 match 하지 못함 - Iterative optimization은 우수한 성능을 보이지만 initial condition에 민감 IIRNet 수백만개의 random filter에 대해 학습된 neural network를 사용하여 target magnitude response에서 filter coe..
![](http://i1.daumcdn.net/thumb/C148x148/?fname=https://blog.kakaocdn.net/dn/cih9W7/btsE8zBZEFj/BrqxTGOjZ4PMAr7aiR2omk/img.png)
Lightweight and Interpretable Neural Modeling of an Audio Distortion Effect Using Hyperconditioned Differentiable Biquads Audio distortion effect를 모델링하기 위해 differentiable cacaded biquads를 사용할 수 있음 Hyperconditioned Differentiable Biquads Trainable Infinite Impulse Response (IIR) filter를 hyperconditioned case로 확장 Transformation은 distortion effect의 external parameter를 internal filter와 gain paramete..